Parse a free-text phrase to a query

  Parser, Search, Text

free_text_search

Search a inverted positional index and return ranked references to documents relevant to the search phrase.

THIS PACKAGE IS IN BETA DEVELOPMENT AND SUBJECT TO DAILY BREAKING CHANGES.

Overview

The components of this library:

  • parse a free-text phrase with query modifiers to a query;
  • search the dictionary and postings of a text index for the query terms;
  • perform iterative scoring and ranking of the returned dictionary entries and postings; and
  • return ranked references to documents relevant to the search phrase.

Query phrases can include modifiers broadly consistent with Google search modifiers.

Free text search overview

Refer to the references to learn more about information retrieval systems and the theory behind this library.

Usage

In the pubspec.yaml of your flutter project, add the free_text_search dependency.

dependencies:
  free_text_search: <latest version>

In your code file add the free_text_search import.

import 'package:free_text_search/free_text_search.dart';

To parse a phrase simply pass it to the QueryParser.parse method, including any modifiers as shown in the snippet below.

// A phrase with all the modifiers
  const phrase =
      '"athletics track" +surfaced arena OR stadium "Launceston" -hobart NOT help-me';

  // Pass the phrase to a QueryParser instance parse method
  final queryTerms = await QueryParser().parse(phrase);

  // The following terms and their `[MODIFIER]` properties are returned
        // "athletics track" [EXACT] 
        // "athletics" [OR] 
        // "track" [OR] 
        // "surfaced" [IMPORTANT] 
        // "arena" [AND] 
        // "stadium" [OR] 
        // "Launceston" [EXACT] 
        // "launceston" [OR] 
        // "hobart" [NOT] 
        // "help-me" [NOT] 
        // "help" [NOT]     

The examples demonstrate the use of the QueryParser and PersistedIndexer.

API

FreeTextSearch class

The FreeTextSearch class exposes the search method that returns a list of SearchResult instances in descending order of relevance.

The length of the returned collection of SearchResult can be limited by passing a limit parameter to search. The default limit is 20.

After parsing the phrase to terms, the Postings and Dictionary for the query terms are asynchronously retrieved from the index:

  • FreeTextSearch.dictionaryLoader retrieves Dictionary;
  • FreeTextSearch.postingsLoader retrieves Postings;
  • FreeTextSearch.configuration is used to tokenize the query phrase (defaults to English.configuration); and
  • provide a custom tokenFilter if you want to manipulate tokens or restrict tokenization to tokens that meet specific criteria (default is TextAnalyzer.defaultTokenFilter.

Ensure that the FreeTextSearch.configuration and FreeTextSearch.tokenFilter match the TextAnalyzer used to construct the index on the target collection that will be searched.

SearchResult class

The SearchResult model represents a ranked search result of a query against a text index:

  • SearchResult.docId is the unique identifier of the document result in the corpus; and
  • SearchResult.relevance is the relevance score awarded to the document by the scoring and ranking algorithm. Higher scores indicate increased relevance of the document.

QueryParser class

The QueryParser parses free text queries, returning a collection of QueryTerm objects that enumerate each term and its QueryTermModifier.

The QueryParser.configuration and QueryParser.tokenFilter should match the TextAnalyzerused to construct the index on the target collection that will be searched.

The QueryParser.parse method parses a phrase to a collection of QueryTerms that includes:

  • all the original words in the phrase, except query modifiers (‘AND’, ‘OR’, ‘”‘, ‘+’, ‘-‘, ‘NOT);
  • derived versions of all words returned by the QueryParser.configuration.termFilter, including child words and stems or lemmas of exact phrases; and

QueryTerm for a derived version of a term always has its QueryTerm.modifier property set to QueryTermModifier.OR, unless the term was marked QueryTermModifier.NOT in the query phrase.

FreeTextQuery class

The FreeTextQuery enumerates the properties of a text search query:

  • FreeTextQuery.phrase is the unmodified search phrase, including all modifiers and tokens; and
  • FreeTextQuery.terms is the ordered list of all terms extracted from the phrase used to look up results in an inverted index.

QueryTerm class

The QueryTerm object extends Token, and enumerates the properties of a term in a free text query phrase:

  • QueryTerm.term is the term that will be looked up in the index;
  • QueryTerm.termPosition is the zero-based position of the term in an ordered list of all the terms in the source text; and
  • FreeTextQuery.modifier is the QueryTermModifier applied for this term. The default modifierisQueryTermModifier.AND`.

QueryTermModifier Enumeration

The phrase can include the following modifiers to guide the the search results scoring/ranking algorithm:

  • terms or phrases wrapped in double quotes will be marked QueryTermModifier.EXACT (e.g."athletics track");
  • terms preceded by "OR" are marked QueryTermModifier.OR and are alternatives to the preceding term;
  • terms preceded by "NOT" or "-" are marked QueryTermModifier.NOT to rank results lower if they include these terms;
  • terms following the plus sign "+" are marked QueryTermModifier.IMPORTANT to rank results that include these terms higher; and
  • all other terms are marked as QueryTermModifier.AND.

Definitions

The following definitions are used throughout the documentation:

  • corpus– the collection of documents for which an index is maintained.
  • dictionary – is a hash of terms (vocabulary) to the frequency of occurence in the corpus documents.
  • document – a record in the corpus, that has a unique identifier (docId) in the corpus‘s primary key and that contains one or more text fields that are indexed.
  • index – an inverted index used to look up document references from the corpus against a vocabulary of terms. The implementation in this library relies on a positional inverted index, that also includes the positions of the indexed term in each document.
  • postings – a separate index that records which documents the vocabulary occurs in. .
  • postings list – a record of the positions of a term in a document and its fields. A position of a term refers to the index of the term in an array that contains all the terms in the text.
  • term – a word or phrase that is indexed from the corpus. The term may differ from the actual word used in the corpus depending on the tokenizer used.
  • text – the indexable content of a document.
  • token – representation of a term in a text source returned by a tokenizer. The token may include information about the term such as its position(s) in the text or frequency of occurrence.
  • tokenizer – a function that returns a collection of tokens from text, after applying a character filter, term filter, stemmer and / or lemmatizer.
  • vocabulary – the collection of terms indexed from the corpus.

References

Issues

If you find a bug please fill an issue.

This project is a supporting package for a revenue project that has priority call on resources, so please be patient if we don’t respond immediately to issues or pull requests.

Contribute and/or Download the source code on GitHub